Conformément au règlement (UE) No. 305/2011

1. Code d'identification unique du produit type :

VIS À BÉTON CONNECTEUR TECNARIA VCEM-E VIS À BÉTON CONNECTEUR TECNARIA MINICEM-E VIS À BÉTON CONNECTEUR TECNARIA NANOCEM-E

2. Usage ou usages prévus :

Les vis à béton CONNECTEUR TECNARIA VCEM-E, CONNECTEUR TECNARIA MINICEM-E et CONNECTEUR TECNARIA NANOCEM-E sont des ancrages en acier au carbone. Ils sont vissés dans un trou de forage cylindrique pré-percé. Le filetage spécial de l'ancrage découpe un filet interne dans l'élément pendant la prise. L'ancrage est caractérisé par un verrouillage mécanique dans le filetage spécial.

3. Fabricant:

Tecnaria S.p.A. Viale Pecori Giraldi 55 – 36061 Bassano del Grappa VI Italie

4. Mandataire:

Sans objet

5. Système EVCP:

1

6. Document d'Évaluation Européen (DEE) :

EAD-330232-00-0601

Évaluation Technique Européenne (ÉTE) :

ETA-20/0831 of 2020/12/18

Organisme d'Évaluation Technique (OÉT) :

IETcc

Organisme notifié:

IETcc n 1219

Conformément au règlement (UE) No. 305/2011

7. Performances déclarées :

VCEM-E = CEM 12.5

MINICEM-E = CEM 10.5

NANOCEM-E = CEM 7.5

Tableau C1 : Valeurs caractéristiques aux charges de traction de la méthode de calcul A

Valeurs caractéristiques aux charges de traction de la		Performance				
métho	ode de calcul A		CEM 7.5	CEM 10.5	CEM 12.5	CEM 16.5
Charg	e de traction : rupture de l'acier					
$N_{Rk,s}$	Résistance caractéristique de l'acier en traction :	[kN]	18.7	32.7	51.2	115.9
γMs	Coefficient de sécurité partiel : ")	[-]	1.5	1.5	1.5	1.5
Charg	e de traction : rupture par extraction-glisse	ement				
N _{Rk,p} , ucr	Résistance caractéristique à la traction dans un béton non fissuré C20/25 :	[kN]	9	12	20	40
Ψc,ucr	C30/37	[-]	1.22	1.09	1.06	1.04
Ψc,ucr	C40/45	[-]	1.41	1.07	1.10	1.06
Ψc.ucr	C50/60	[-]	1.58	1.22	1.13	1.08
N _{Rk,p.}	Résistance caractéristique à la traction dans un béton fissuré C20/25 :	[kN]	6	9	12	30
Ψc,cr	C30/37	[-]	1.22	1.09	1.06	1.04
Ψc.cr	C40/45	[-]	1.41	1.07	1.10	1.06
Ψc,cr	C50/60	[-]	1.58	1.22	1.13	1.08
Ynst	Coefficient de sécurité de l'installation : ")	[-]	1.2	1.2	1.2	1
Charg	e de traction : rupture par cône de béton e	t ruptur	e par fenda	ge du béton		
het	Profondeur d'ancrage effective	[mm]	42	45	52	86
Yns	Coefficient de sécurité de l'installation : *)	[-]	1.2	1.2	1.2	1
Scr,N	Espacement critique :	[mm]	126	135	156	258
C _{Cr,N}	Distance au bord :	[mm]	63	67	78	129
Scr,sp	Espacement critique (fendage) :	[mm]	126	135	177	292
Cor,sp	Distance au bord (fendage) :	[mm]	63	67	88	146

^{*)} En l'absence d'autres réglementations nationales

Tableau C2 : Déplacements sous charges de traction

Déplacements sous charges de traction dans un			Performance				
béton	non fissuré		CEM 7.5	CEM 10.5	CEM 12.5	CEM 16.5	
N	Charge de traction de service dans le béton non fissuré	[kN]	3.6	4.8	9.5	19.0	
δηο	Déplacement à court terme sous des charges de traction :	[mm]	0.4	0.4	0.4	0.9	
δ_{N^∞}	Déplacement à long terme sous des charges de traction :	[mm]	1.0	1.1	1.4	1.4	
Dépla	cements sous charges de traction dans	s un	Performance				
béton	fissuré		CEM 7.5	CEM 10.5	CEM 12.5	CEM 16.5	
N	Charge de traction de service dans le béton fissuré	[kN]	2.4	3.6	5.7	11.9	
δηο	Déplacement à court terme sous des charges de traction :	[mm]	0.6	0.7	0.5	0.6	
δ _{N∞}	Déplacement à long terme sous des charges de traction :	[mm]	1.4	1.2	1.4	1.2	

Conformément au règlement (UE) No. 305/2011

Tableau C3 : Valeurs caractéristiques aux charges de cisaillement de la méthode de calcul A

Valeu	Valeurs caractéristiques aux charges de cisaillement		Performance			
de la i	méthode de calcul A		CEM 7.5	CEM 10.5	CEM 12.5	CEM 16.5
Charg	e de cisaillement : rupture de l'acier sans l	bras de	levier			
$V_{Rk,s}$	Résistance caractéristique de l'acier en cisaillement :	[kN]	7.5	16.3	35.6	57.9
Ms	Coefficient de sécurité partiel : ")	[-]	1.25	1.25	1.25	1.25
Charg	e de cisaillement : rupture de l'acier avec l	oras de	levier			
M ⁰ Rk,	Résistance caractéristique à la flexion :	[Nm]	15.2	35.3	69.3	235.9
Ms	Coefficient de sécurité partiel : ")	[-]	1.25	1.25	1.25	1.25
Charg	e de cisaillement : rupture du béton par ef	fet de le	vier			
k	Facteur k	[-]	1	1	1	2
Yest	Coefficient de sécurité de l'installation : *)	[-]	1	1	1	1
Charg	e de cisaillement : rupture du bord du béto	on				
I _f	Profondeur d'ancrage effective sous charge de cisaillement	[mm]	42	45	52	86
dnom	Diamètre extérieur de l'ancre:	[mm]	7.5	10.5	12.5	16.5
Yinst	Coefficient de sécurité de l'installation : *)	[-]	1	1	1	1

^{*)} En l'absence d'autres réglementations nationales

Tableau C4 : Déplacements sous charges de cisaillement

Dánla	Déplacements sous charges de cisaillement			Performance				
Depia				CEM 10.5	CEM 12.5	CEM 16.5		
V	Charge de cisaillement de service dans le béton fissuré et non fissuré C20/25 à C50/60:	[kN]	3.0	6.5	12.2	27.6		
διο	Déplacement à court terme sous des charges de cisaillement :	[mm]	1.3	1.4	1.8	2.3		
δ _{N∞}	Déplacement à long terme sous des charges de cisaillement :	[mm]	2.0	2.1	2.7	3.5		

Conformément au règlement (UE) No. 305/2011

Tableau D1 : Valeurs caractéristiques pour la résistance au feu

Durée de	résistance au feu = 30 minutes		CEM 7.5	CEM 10.5	CEM 12.5	CEM 16.5	
С	harge de traction, rupture de l'acier						
NRk,s,fi,30	Résistance caractéristique	[kN]	0.23	0.61	1.28	2.90	
R	upture par extraction-glissement						
N _{Rk,p,fi,30}	Résistance caractér. en béton C20/25 à C50/60	[kN]	1.50	2.25	3.00	7.50	
R	upture par cône de béton "1						
NRk,c,fi,30	Résistance caractér en béton C20/25 à C50/60	[kN]	2.06	2.45	3.51	12.35	
С	harge de cisaillement, rupture de l'acier sans bras	de levier					
$V_{Rk,s,fi,30}$	Résistance caractéristique	[kN]	0.23	0.61	1.28	2.90	
Charge de cisaillement, rupture de l'acier avec bras de levier							
MRk,s,fi,60	Résistance caractéristique à la flexion	[Nm]	0.19	0.66	1.73	5.90	

Durée de	résistance au feu = 60 minutes		CEM 7.5	CEM 10.5	CEM 12.5	CEM 16.5	
C	harge de traction, rupture de l'acier						
NRk,s,fi,60	Résistance caractéristique	[kN]	0.21	0.53	0.96	2.17	
R	upture par extraction-glissement						
N _{Rk,p,fi,60}	Résistance caractér. en béton C20/25 à C50/60	[kN]	1.50	2.25	3.00	7.50	
R	upture par cône de béton "						
NRk,c,fi,60	Résistance caractér en béton C20/25 à C50/60	[kN]	2.06	2.45	3.51	12.35	
C	harge de cisaillement, rupture de l'acier sans bras	de levier					
V _{Rk,s,fi,60}	Résistance caractéristique	[kN]	0.21	0.53	0.96	2.17	
C	Charge de cisaillement, rupture de l'acier avec bras de levier						
M _{Rk,s,fi,60}	Résistance caractéristique à la flexion	[Nm]	0.17	0.57	1.30	4.42	

Durée de	résistance au feu = 90 minutes		CEM 7.5	CEM 10.5	CEM 12.5	CEM 16.5	
CI	Charge de traction, rupture de l'acier						
NRk,s,fi,90	Résistance caractéristique	[kN]	0.16	0.41	0.83	1.88	
R	upture par extraction-glissement						
N _{Rk,p,fi,90}	Résistance caractér. en béton C20/25 à C50/60	[kN]	1.50	2.25	3.00	7.50	
R	upture par cône de béton "						
NRk,c,fi,90	Résistance caractér en béton C20/25 à C50/60	[kN]	2.06	2.45	3.51	12.35	
CI	harge de cisaillement, rupture de l'acier sans bras	de levier					
V _{Rk,s,fi,90}	Résistance caractéristique	[kN]	0.16	0.41	0.83	1.88	
CI	Charge de cisaillement, rupture de l'acier avec bras de levier						
M _{Rk,s,fi,90}	Résistance caractéristique à la flexion	[Nm]	0.13	0.41	1.13	3.83	

Durée de	résistance au feu = 120 minutes		CEM 7.5	CEM 10.5	CEM 12.5	CEM 16.5	
Charge de traction, rupture de l'acier							
NRk,s,fi,120	Résistance caractéristique	[kN]	0.12	0.33	0.64	1.45	
R	upture par extraction-glissement						
NRk,p,fi,120	Résistance caractér. en béton C20/25 à C50/60	[kN]	1.20	1.80	2.40	6.00	
R	upture par cône de béton ")						
NRk,c,fi,120	Résistance caractér en béton C20/25 à C50/60	[kN]	1.65	1.96	2.81	9.88	
CI	harge de cisaillement, rupture de l'acier sans bras	de levier					
VRk,s,fi,120	Résistance caractéristique	[kN]	0.12	0.33	0.64	1.45	
CI	Charge de cisaillement, rupture de l'acier avec bras de levier						
M _{Rk,8,fi,120}	Résistance caractéristique à la flexion	[Nm]	0.10	0.35	0.87	2.95	

Espacement et distance au bord		CEM 7.5	CEM 10.5	CEM 12.5	CEM 16.5	
S _{cr} ,N	Espacement	[mm]	168	180	208	344
Smin	Espacement minimal	[mm]	45	50	60	100
C _{cr} ,N	Distance au bord	[mm]	84	90	104	172
Cmin	Distance au bord minimal (feu à un côté)	[mm]	84	90	104	172
Cmin	Distance au bord minimal (feu à deux côtés)	[mm]	300	300	300	300
g _{Msp}	Coefficient de sécurité partiel : *)	[-]	1.0	1.0	1.0	1.0

^{*)} En l'absence d'autres réglementations nationales

^{**)} En règle générale, la rupture par fendage peut être négligée lorsque fissuré béton et l'armature est considéré.

Rupture du béton par effet de levier	CEM 7.5	CEM 10.5	CEM 12.5	CEM 16.5			
Facteur k []	1	1	1	2			
Selon la norme EN 1992-4-2018, ces valeurs du facteur k et les valeurs pertinentes de Neres données dans les tableaux							

Selon la norme EN 1992-4:2018, ces valeurs du facteur k et les valeurs pertinentes de Nak.c.ii données dans les tableaux ci-dessus doivent être prises en compte dans le calcul.

Rupture du bord du béton

La résistance caractéristique $V^0_{RK,c,fi}$ dans un béton C20/25 à C50/60 est déterminée par $V^0_{RK,c,fi} = 0.25 \times V^0_{RK,c}$ (\leq R90) et $V^0_{RK,c,fi} = 0.20 \times V^0_{RK,c}$ (R120)

Avec V⁰_{RK,c} valeur initiale de la résistance caractéristique dans le béton fissuré C20/25 à température normale selon la norme EN 1992-4:2018.

Conformément au règlement (UE) No. 305/2011

Les performances du produit identifié à le point 1 sont conformes aux performances déclarées indiquées au point 7. La présente déclaration des performances est établie conformément au règlement UE no 305/2011 sous la seule responsabilité du fabricant identifié au point 3

Signé pour le fabricant et en son nom par :

Marco Guazzo

Bassano del Grappa (Italie), 30/6/2021

TECNARIA S.p.A.

Viale Pecori Giraldi, 55

36061 Bassano del Grappa (VI) - Italie

Tel. +39 0424 502029

www.tecnaria.com